LEONI QMS System Architecture

AI & Big Data Integration for Quality Management System

System Architecture Diagram

flowchart TD classDef bigData fill:#9575cd,stroke:#333,stroke-width:2px,color:white classDef ai fill:#ff8a65,stroke:#333,stroke-width:2px,color:white classDef database fill:#4db6ac,stroke:#333,stroke-width:2px,color:white classDef frontend fill:#4fc3f7,stroke:#333,stroke-width:2px,color:white subgraph DataSources["Data Sources"] BOL[Electric Test Machine
BOL]:::bigData QA[Quality Assurance
Inspections] PROD[Production
Systems] end subgraph DataPipeline["Big Data Pipeline"] KAFKA[Apache Kafka
Data Streaming]:::bigData SPARK[Apache Spark
ETL & Processing]:::bigData end subgraph DataStorage["Data Storage"] DB[(QMS Database)]:::database DL[(Data Lake)]:::database end subgraph AILayer["AI & Analytics"] ML[Machine Learning
Algorithms]:::ai NLP[NLP
Processing]:::ai TS[Time Series
Analysis]:::ai PRED[Predictive
Maintenance]:::ai end subgraph Applications["Applications"] API[RESTful API
Gateway] CHAT[AI Chatbot
Interface]:::ai DASH[Analytics
Dashboard]:::frontend ALERT[Alert
System]:::frontend end BOL -->|Real-time data| KAFKA QA -->|Quality data| KAFKA PROD -->|Production data| KAFKA KAFKA -->|Streaming data| SPARK SPARK -->|Processed data| DB SPARK -->|Historical data| DL DB -->|Training data| ML DL -->|Historical patterns| ML DB -->|Text queries| NLP DB -->|Time series data| TS ML -->|Predictions| PRED NLP -->|Understanding| CHAT TS -->|Trends| DASH PRED -->|Maintenance needs| ALERT API -->|Data access| DASH API -->|Data access| CHAT DB -->|Direct queries| API User(["Users & Quality
Engineers"]):::frontend User -->|Queries| CHAT User -->|Views| DASH User <-->|Receives| ALERT

Integration Overview

The LEONI Quality Management System (QMS) integrates AI capabilities with Big Data technologies to provide real-time insights, predictive analytics, and intelligent assistance to quality engineers. The system collects data from various sources, processes it in real-time, stores it efficiently, analyzes it using AI algorithms, and presents actionable insights through intuitive interfaces.

Big Data Pipeline

Real-time data streaming and processing from BOL electric test machines and other quality data sources.

Apache Kafka
Apache Spark

AI Components

Machine learning algorithms for defect prediction, pattern recognition, and natural language processing for the chatbot interface.

ML Algorithms
NLP
Predictive Models

Database Integration

Structured storage of quality metrics, defect data, and historical performance for rapid querying and analysis.

PostgreSQL
JSONB

Key Components

1. Data Collection & Streaming

The electric test machine "BOL" generates continuous streams of test data that are captured and transmitted to the Apache Kafka cluster. Kafka acts as a high-throughput, low-latency data highway that ensures no data loss and provides fault tolerance.

2. Data Processing & Transformation

Apache Spark consumes the data streams from Kafka, performs ETL operations, data cleansing, and transformation. Complex event processing identifies patterns and anomalies in real-time, allowing immediate reactions to quality issues.

3. AI & Analytics

The AI layer incorporates multiple machine learning models that perform:

4. User Interfaces

The QMS provides multiple interaction points for users: